此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

当前位置:首页>>广州有道有限元>>Pro/E技术

最全的钣金加工工艺 Proe钣金注意事项

2013-08-28 12:20  by:有限元  来源:广州有道有限元

钣金加工工艺介绍

简介

1.1    简介

 按钣金件的基本加工方式,如下料、折弯、拉伸、成型、焊接。 本规范阐述每一种加工方式所要注意的工艺要求。 

1.2    关键词

钣金、下料、折弯、拉伸、成形、排样、最小弯曲半径、毛边、回弹、打死边、焊接

    下料

下料根据加工方式的不同,可分为普冲数冲、剪床开料、激光切割、风割,由于加工方法的不同,下料的加工工艺性也有所不同。 钣金下料方式主要为数冲和激光切割

2.1   数冲是用数控冲床加工,板材厚度加工范围为 冷扎板热扎板 小于或等于3.0mm,铝板 小于或等于4.0mm,不锈钢 小于或等于2.0mm

2.2   冲孔有最小尺寸要求

冲孔最小尺寸与孔的形状、材料机械性能和材料厚度有关。

* t为材料厚度,冲孔最小尺寸一般不小于1mm

高碳钢、低碳钢对应的公司常用材料牌号列表见第7章附录A

表1   冲孔最小尺寸列表

2.3  数冲的孔间距与孔边距

零件的冲孔边缘离外形的最小距离随零件与孔的形状不同有一定的限制,见图2.3.1。当冲孔

边缘与零件外形边缘不平行时,该最小距离应不小于材料厚度t;平行时,应不小于1.5t

2.4折弯件及拉深件冲孔时,其孔壁与直壁之间应保持一定的距离

折弯件或拉深件冲孔时,其孔壁与工件直壁之间应保持一定的距离(图2.4.1)

2.5 螺钉、螺栓的过孔和沉头座

螺钉、螺栓过孔和沉头座的结构尺寸按下表选取取。对于沉头螺钉的沉头座,如果板材太薄难以同时保证过孔d2和沉孔D,应优先保证过孔d2

2.6 激光切割是用激光机飞行切割加工,板材厚度加工范围为冷扎板 热扎板 小于或等于20.0mm, 不锈钢 小于10.0mm 。其优点是加工板材厚度大,切割工件外形速度快,加工灵活.缺点是无法加工成形,网孔件不宜用此方式加工,加工成本高!

3 折弯

3.1   折弯件的最小弯曲半径

材料弯曲时,其圆角区上,外层收到拉伸,内层则受到压缩。当材料厚度一定时,内r越小,材料的拉伸和压缩就越严重;当外层圆角的拉伸应力超过材料的极限强度时,就会产生裂缝和折断,因此,弯曲零件的结构设计,应避免过小的弯曲圆角半径。公司常用材料的最小弯曲半径见下表。

弯曲半径是指弯曲件的内侧半径,t是材料的壁厚。

t为材料壁厚,M为退火状态,Y为硬状态,Y2为1/2硬状态。 

表5公司常用金属材料最小折弯半径列表

3.2 弯曲件的直边高度

3.2.1 一般情况下的最小直边高度要求

弯曲件的直边高度不宜太小,最小高度按(图4.2.1)要求:h>2t

3.2.2  特殊要求的直边高度

如果设计需要弯曲件的直边高度h2t,,则首先要加大弯边高度,弯好后再加工到需要尺寸;或者在弯曲变形区内加工浅槽后,再折弯(如下图所示)。

3.2.3  弯边侧边带有斜角的直边高度

当弯边侧边带有斜角的弯曲件时(图4.2.3),侧面的最小高度为:h=24t3mm

图4.2.3.1 弯边侧边带有斜角的直边高度

3.3  折弯件上的孔边距

孔边距:先冲孔后折弯,孔的位置应处于弯曲变形区外,避免弯曲时孔会产生变形。孔壁至弯边的距离见表下表。

3.4    局部弯曲的工艺切口

3.4.1 折弯件的弯曲线应避开尺寸突变的位置

局部弯曲某一段边缘时,为了防止尖角处应力集中产生弯裂,可将弯曲线移动一定距离,以离开尺寸突变处(图4.4.1.1 a),或开工艺槽(图4.4.1.1 b),或冲工艺孔(图4.4.1.1 c) 。注意图中的尺寸要求:SR ;槽宽kt;槽深L≥ t+R+k/2

3.4.2  当孔位于折弯变形区内,所采取的切口形式

当孔在折弯变形区内时,采用的切口形式示例(图4.4.2.1)

3.6 打死边的设计要求

     打死边的死边长度与材料的厚度有关。如下图所示,一般死边最小长度L≥3.5t+R

 其中t为材料壁厚,R为打死边前道工序(如下图右所示)的最小内折弯半径。

3.7 设计时添加的工艺定位孔

为保证毛坯在模具中准确定位,防止弯曲时毛坯偏移而产生废品,应预先在设计时添加工艺定位孔,如下图所示。特别是多次弯曲成形的零件,均必须以工艺孔为定位基准,以减少累计误差,保证产品质量。

如上图所示所示, a)先冲孔后折弯,L尺寸精度容易保证,加工方便。b)和c)如果尺寸L精度要求高,则需要先折弯后加工孔,加工麻烦。

3.9    弯曲件的回弹

影响回弹的因素很多,包括:材料的机械性能、壁厚、弯曲半径以及弯曲时的正压力等。

3.9.1 折弯件的内圆角半径与板厚之比越大,回弹就越大。

3.9.2 从设计上抑制回弹的方法示例

弯曲件的回弹,目前主要是由生产厂家在模具设计时,采取一定的措施进行规避。同时,从设计上改进某些结构促使回弹角简少如下图所示:在弯曲区压制加强筋,不仅可以提高工件的刚度,也有利于抑制回弹。

4 拉伸

4.1   拉伸件底部与直壁之间的圆角半径大小要求

如下图所示,拉伸件底部与直壁之间的圆角半径应大于板厚,即r1。为了使拉伸进行得更顺利,一般取r1=(3~5)t,最大圆角半径应小于或等于板厚的8倍,即r18t

4.2   拉伸件凸缘与壁之间的圆角半径

拉伸件凸缘与壁之间的圆角半径应大于板厚的2倍,即r22t,为了使拉伸进行得更顺利,一般取r2=(5~10)t,最大凸缘半径应小于或等于板厚的8倍,即r28t。(参见图5.1.1)   

4.3    圆形拉伸件的内腔直径

圆形拉伸件的内腔直径应取d+10t,以便在拉伸时压板压紧不致起皱。(参见图5.1.1)

4.4    矩形拉伸件相邻两壁间的圆角半径

矩形拉伸件相邻两壁间的圆角半径应取r3 3t,为了减少拉伸次数应尽可能取r3 ≥H/5,以便一次拉出来。

4.5  圆形无凸缘拉伸件一次成形时,其高度与直径的尺寸关系要求

圆形无凸缘拉伸件一次成形时,高度H和直径d之比应小于或等于0.4,即H/d 0.4,如下图所示。

4.6  拉伸件设计图纸上尺寸标注的注意事项

拉伸件由于各处所受应力大小各不相同,使拉伸后的材料厚度发生变化。一般来说,底部中央保持原来的厚度,底部圆角处材料变薄,顶部靠近凸缘处材料变厚,矩形拉伸件四周圆角处材料变厚。 

4.6.1  拉伸件产品尺寸的标准方法

在设计拉伸产品时,对产品图上的尺寸应明确注明必须保证外部尺寸或内部尺寸,不能同时标注内外尺寸。

4.6.2  拉伸件尺寸公差的标注方法

拉伸件凹凸圆弧的内半径以及一次成形的圆筒形拉伸件的高度尺寸公差为双面对称偏差,其偏差值为国标(GB)16级精度公差绝对值的一半,并冠以±号。

5.3  百叶窗

百叶窗通常用于各种罩壳或机壳上起通风散热作用,其成型方法是借凸模的一边刃口将材料切开,而凸模的其余部分将材料同时作拉伸变形,形成一边开口的起伏形状。

百叶窗的典型结构参见图6.3.1

百叶窗尺寸要求:a4tb6th5tL24tr0.5t

5.4  孔翻边

孔翻边型式较多,本规范只关注要加工螺纹的内孔翻边,如图6.4.1所示。

  焊接

6.1  焊接方法的分类

焊接方法主要有电弧焊、电渣焊、气焊、等离子弧焊、熔化焊、压力焊、钎焊,钣金产品焊接主要为电弧焊、气焊。

6.2  电弧焊具有灵活、机动,适用性广泛,可进行全位置焊接;所用设备简单、耐用性好、维护费用低等优点。但劳动强度大,质量不够稳定,决定于操作者水平。

   适用焊接3mm以上的碳钢、低合金钢、不锈钢和铜、铝等非铁合金

6.3  气焊火焰温度和性质可以调节,于弧焊热源比热影响区宽,热量不如电弧集中,生产率低 

    应用于薄壁结构和小件的焊接,可焊钢,铸铁,铝,铜及其合金,硬质合金等

                                  Proe钣金注意事项

钣金设计中,用传统方法画展开图时,只要有一个尺寸算错,加工后就可能导致零件报废。但是用Pro/E设计就非常轻松,只需输人精确的折弯半径,不用作任何尺寸计算,点击"展开"后,系统会自动展开,得到精确的展开图。
  用Pro/进行钣金设计,在平整壁侧面创建折弯壁时,会出现SEL RADIUS选取半径的命令菜单,要求设计人员选择折弯半径。系统提供选择的折弯半径为:等于工件厚度;等于2倍的工件厚度; "Enter Value输人值"。实际情况中,对于高精度的扳金件设计来说,折弯半径正好"等于工件厚度"的情况很少,"等于2倍的工件厚度"更少见,多选取"Enter Value输入值"
  在Pro/E钣金设计中,影响展开图尺寸精度的关键因素是折弯半径。只有输人精确的折弯半径,才能得到精确的展开尺寸。可是在Pro/E钣金模块中,没有固定的公式可以计算折弯半径。使展开图的尺寸精度,因设计人员的经验不同而产生程度不同的设计误差。甚至一些厂家对于精度要求很高的重要钣金件,宁愿用传统方法作展开图,也不敢用Pro/E自动生成的展开图下料。因此,本文重点介绍Pro/E钣金设计中折弯半径的确定方法。
  实测圆角半径不能作为Pro/E折弯半径的 "Enter Value输入值"
  传统的确定展开尺寸的方法,一般通过做试验,把试样折弯后,测量成型尺寸,再把成型尺寸和试样的下料尺寸比较,得出延伸量。名义尺寸减去延伸量,就是下料用的展开尺寸。因为延伸量随折弯圆角的大小而不同,生产厂家根据钣金件要求线条简洁的特点,通常对相同厚度的板材,选用统一的较小圆角R<板厚,得到统一的延伸量,以简化制造工艺。如果有特殊要求必须采用不同的折弯圆角,则需单独求出延伸量,但这种情况很少。
  如图l所示的折弯,1.2mm厚的Q235冷板,通常选用7mm宽的下模,已知折弯90°的延伸量为2.l,每翼外档尺寸都是100L形工件,其展开尺寸为:100+100-2.1=197.9
  如果板材拆弯2次,就减去2个延申量,折弯3次,减去3个延伸量……依此类推。
  如果折弯角度不是90°,其延伸量就要按折弯比例打折扣。如折弯45°,延伸量取二分之一,即1.0530°。取三分之一,即0.7
  产生相应延伸量的折弯圆角可以实际测量,但是这个实测圆角的折弯半径,不能作为Pro/E钣金设计时,SEL RAbIUS选取半径]/"Enter Value输人值"使用。仍以1.2mm厚的冷板为例,产生2.1延伸量的圆角半径(外圆角),实测为R2.5 ,而正确的Pro/E钣金设计的折弯半径"Enter Value输人值"(外圆角)应当是1.9,显然不是一回事。另外,折弯圆角很难测量精确,尤其对于非直角折弯。

确定Pro/E折弯半径"Enter Value输入值"的步骤
  图2所示的钣金件,每个壁上都布有大小不等的方孔、圆孔,这些孔都有相应的装配要求,是个典型的较高精度的钣金零件。其中8个小4.3.同轴度要求在Φ0.1以内。零件材料Q235冷板,1.2mm厚,所有孔都在数控冲床下料时一并作出。对于这种高精度的钣金件,如果展开的理论尺寸已经含有误差,加工后的精度就无法保证。现以图2零件为例,说明Pro/E钣金设计时,如何确定折弯半径。
  首先在Pro/E钣金零件设计中,"创建分离的平整壁",作出中间长 126.99的那块壁。接着使用半径创建平整壁,作出侧边长101.78的那块壁。退出草绘前,需要输入半径数值,这里采用系统默认的内侧半径。
  1.2mm厚的冷板是常用材料,查得钣金厂家现成的延伸量数据为2.1,两块壁折弯900的展开长应为:
  126.99+101.78一延伸量2.1=226.67 Pro/E设计中输人半径数值后,如果展开长=226.b7,这个半径就对了。
  根据经验,常用钢板的Pro/E折弯输人内半径都小于且接近板材厚度,所以先设内半径R=1.00钣金生成后,点击"Flat Patte。平整阵列"展开,得到展开长226.540输人半径偏大,需调整;
  接着用R=0.7输人,得到展开长226.67,与用延伸量算出的展开尺寸相等。
  零件上共有4处折弯,折弯半径都相同。零件成型后,用"Flat Pattern平整阵列"展开.得到展开长=346.020现在用延伸量数据来验算展开长:
  126.99+(101.78+11.94 )x2-4x2.1=346.03
  2个展开长数据比较,存在设计误差0.01 mm。考虑到折弯一次时两者都等于226.67,误差为零.这个精度应该可以接受。如需更精确,可以设R=0.697,自动展开后,折弯一次和折弯4次的尺寸,都和延伸量求出的尺寸相同,误差均为零。
  图2零件由于输人了精确的半径数值,因而得到准确的展开尺寸,进而为零件达到成品精度要求,包括8tb4.3mm孔的同轴度要求,创造了条件。
  本例钣金也可用拉伸方法设计,截面一次性草绘完成,然后拉伸155.19mm。但是草绘截面时,也要输人用上述方法得到的内半径0.7mm或外半径1.9mm,才能得到正确的展开长346.02mm
  确定Pro/E折弯半径的步骤归纳为:
  (1)已有该规格的延伸量数据,如果没有,可用试验求得;
  (2)Pro/E"创建分离的平整壁",再"使用半径创建平整壁"
  (3)设内R板厚,完成L形钣金件的创建;
  (4)使用"Flai Pattern平整阵列"展开,把该展开尺寸和用传统的延伸量算出的尺寸进行比较;
  (5)如果展开尺寸数据有误差,修正R;
  (6)代人修正的R值。如果展开尺寸还有误差,继续修正R值,直到取得正确的展开尺寸。这时候的R值,才是需要的折弯半径"Enter Value输人值"
  如果钣金零件要折弯多次,可以把R值加人Pro/E"参数",这样,每次创建折弯时,只要点击参数,而不用输入具体数字,避免了数字输错的风险。具体操作如下:
  点击菜单管理器的设置(set up)参数(Parameters ),打开"钣金参数"对话框."缺省值和参数"中选择"SMT_ DFLT BEND_ RADIUS",在""文本框中输人0.7,然后点击"确定"完成"完成"。这样,在[SEL RADIUS选取半径卫的命令菜单中,就会多出一个"By Param(按参数)"的选项。操作时点击"By Param(按参数)"即可。
  常用钢板的折弯半径"Enter Value输入值"
  笔者把Pro/E钣金设计中,常用钢板的折弯半径"Enter Valuesh输人值",以及其它相关参数列于表1,与同行们交流,这些参数已经过实际生产的长期验证,表1内延伸量为折弯90°的数据。

下模开口尺寸决定了折弯圆角的大小,表1中的下模开口尺寸是实际生产中最常用的。如果对圆角有特殊要求,只需改变下模开口尺寸,并用试验方法得出延伸量数据,然后用前述方法求出具体的Por/E折弯半径输人值